Comparison of control oriented models for the Long-Stator Linear Synchronous Motor and their experimental validation

Roberto Leidhold
Rodrigo Benavides
Peter Mutschler

Department of Power Electronics and Control of Drives
Darmstadt University of Technology
Germany
Organization

• Introduction
• Motor Description
• Motor Models
• Results
• Conclusions
Introduction

Linear Motors

• Replace rotative motors + rotative-to-linear transmissions
• Possibility of new applications
• Characteristics
 - higher dynamic response
 - no backslash
 - higher efficiency
 - still more expensive (motor + control)
• Known since a long time (e.g. Laithwaite 1971)
• It is only recently that instances of application are found
 Due to the advances in:
 - power electronics
 - signal processing and
 - control systems
Introduction

Linear Motors

• One key for designing a control system is to have an adequate model
 - Magnetic saturation
 - Non-sinusoidal flux
 - Non-periodic characteristics (end effects)
 - Cogging force

• Two approaches are analyzed for modeling a Linear Motor:
 - Based on Finite Element Analysis (FEA)
 - Based on Magnetic Equivalent Circuits (MEC)

• Model oriented for:
 - Simulation of the drive (more features than the fundamental wave model)
 - Design of the controllers
Motor Description

• Linear motor

• Permanent Magnet (PM) synchronous motor
 - high efficiency
 - high power density
 - allows a higher air gap

• Long stator (carriageway) - Short mover (vehicle)
 - passive mover: no brushes or cables connected
 - longer travel distance
Motor Description

- Pole pitch $\tau = 30$ mm
- Stator: 13 poles
 - 39 slots
- Mover: 3 poles
- Nominal Force 500 N
- Nominal Current 54 A
Motor Description

- One segment
- Load machine
- Path
- Mover

1 m
Motor Model

Interior permanent magnet motor (IPM)

Geometry

Magnetic characteristics

\[0 = f_2(\lambda, i, a, x) \]

\[F_E = f(a, x) \]

Electrical

\[\frac{d\lambda}{dt} = -RI + u \]

Stationary frame

\[\frac{dv}{dt} = \frac{1}{M} (F_E - Bv - F_L) \]

Mechanical

\[\frac{dx}{dt} = v \]
Motor Model: Magnetic Equivalent Circuit

\[0 = f_1(F_S, a_1, a_2, a_3, \phi_S, \phi_M(x)) \]
\[\lambda = w^n \Phi_S \quad F_S = w^n i \]

Virtual Work

\[F_E = (a_2 - a_3 \mathbf{1}_{40 \times 1})^T \frac{d\phi_M(x)}{dx} \]
Motor Model: Magnetic Equivalent Circuit

Flux facing the tooth, due to the magnet

\[\phi_M(x) = B_r l_s b_G(x) \]
Motor Model: Finite Element Analysis

2D Magnetostatic Simulation
Results (Static)

MEC based model

Force vs. Position

Three Segments connected in series

Fed with q-current in the field oriented frame

FEA based model

Experimental test
Results (Dynamic)

Voltage step in the field oriented frame
\(v_q = 50V\)
Conclusions

- Slight differences between models and experimental tests
- High agreement between results of both models
- Future work: use of MEC based model for analysis of magnetic saliencies (for sensorless position detection).

<table>
<thead>
<tr>
<th></th>
<th>FEA based model</th>
<th>MEC based model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model preparation</td>
<td>Simple and Systematic</td>
<td>Requires special skills</td>
</tr>
<tr>
<td></td>
<td></td>
<td>More decisions must be</td>
</tr>
<tr>
<td></td>
<td></td>
<td>taken by the developer</td>
</tr>
<tr>
<td>Offline computations</td>
<td>Slow (days)</td>
<td>Fast (minutes)</td>
</tr>
<tr>
<td>Simulations</td>
<td>Very fast (minutes)</td>
<td>Very fast (minutes)</td>
</tr>
</tbody>
</table>
The speaker’s attendance at this conference was sponsored by the Alexander von Humboldt Foundation.

http://www.humboldt-foundation.de