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Abstract: 
Converters for induction heating applications are realized up to 1.5 MW using IGBTs [3]. Switching 
frequencies up to 150 kHz are realized with those IGBT inverters. For special purposes it is desirable to 
increase the frequency up to 500 kHz. These very high switching frequencies can be achieved using 
MOSFETs, but this is a very costly approach due to the large silicon area of MOSFETs and problems with 
the internal diode of the MOSFET [11]. In many applications a galvanic isolation between the grid and the 
load is mandatory. This is preferably done by a high frequency transformer. Such induction heating plants 
typically are custom tailored and produced in small quantities only, resulting in high production costs.  

To reduce the costs for induction heating plants, 
we propose a modular, IGBT-based converter 
system with switching frequencies up to 500kHz. 
Each IGBT converter module may deliver a power 
of 100 kW at a switching frequency of 100 kHz. 
The modules can be connected either to increase 
the rated power or the output frequency, see 
Figure 1. The output frequency is increased by 
using the method of shifted gate pulse generation, 
while the switching frequency of each module 
remains constant (100kHz). 
There exist a lot of varieties to design the resonant 
circuit (series or parallel resonant) and to connect 
the inverter modules (series or parallel connection) 
for either to boost the output power or the output 
frequency. 
Figure 2 shows as an example two series 
connected inverter modules (100kW, 100kHz 
each) producing a 100kW, 200kHz output at the 
series resonant load circuit.  
It was shown in [11] that the dominant turn off 
losses of the IGBTs decay less than linearly with 
the current. Due to this, a simple current de-rating 
is far less efficient than a phase shifted gate 
pulsing as depicted in Figure 3. In the example of 
Fig. 3, the two modules alternate in actively turning 
off the current (turn off loses) and delivering the 
square output voltage. The inactive module 
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Figure 1: Modular converter system 
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Figure 2: Increasing output frequency. 
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Figure 3: Phase shifted pulsing with two 
inverters. 



provides a free-wheeling path for the 
load current. The active switching 
frequency of each module is 100kHz 
while the resonant output frequency is 
200kHz. Besides the series connection of 
modules, a parallel connection as 
described in [11] is possible. Each 
alternative has its specific benefits. 
When connecting the modules in parallel, 
conduction losses are reduced, as the 
inactive modules don’t carry current. 
With series connection of the modules, 
the timing requirements for simultaneous 
switching in different inverter-modules 
appear less demanding. Investigations 
are necessary to find the better of the 
two solutions. 
The main challenge are the 
switching transients and losses. To 
get a first idea of the switching 
transients and losses, an inverter 
was simulated using Pspice. A 
Spice-model of the Eupec 
FF200 R 12 KS4 transistor module 
was used. Results are shown in Fig. 
4 and 5. In the simulation the gating 
signals were tuned for minimum 
losses. Fig. 4 shows, that for 
minimum losses an overlapping 
conduction of both transistors in one 
arm will occur. The lower transistor 
is gated “on” during the turn-off 
process of the upper transistor. Fig. 5 shows the simulated losses. An experimental setup(600VDC, IAC,peak 
ca. 100A) is under construction now. The final paper will include measurement results and compare these 
with the Pspice simulation. 
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Summary: 
To reduce the costs for induction heating plants, we propose a modular, IGBT-based 
converter system with resonant output frequencies up to 500kHz. The high output 
frequency is achieved using a phase-shiftet gating of “n” converter modules. The 
switching frequency of each inverter module is 1/n of the resonant output. Pspice 
simulations of the switching transients will be compared with experimental results. 


