Comparison of control oriented models for the Long-Stator Linear Synchronous Motor and their experimental validation

> Roberto Leidhold Rodrigo Benavides Peter Mutschler

Department of Power Electronics and Control of Drives Darmstadt University of Technology Germany

R. Leidhold, R. Benavides, P. Mutschler

Organization

- Introduction
- Motor Description
- Motor Models
- Results
- Conclusions

Introduction

Linear Motors 🔿

- Replace rotative motors + rotative-to-linear transmissions
- Possibility of new applications
- Characteristics
 - higher dynamic response
 - no backslash
 - higher efficiency
 - still more expensive (motor + control)
- Known since a long time (e.g. Laithwaite 1971)
- It is only recently that instances of application are found Due to the advances in:
 - power electronics
 - signal processing and
 - control systems

Introduction

Linear Motors 🔿

- One key for designing a control system is to have an adequate model
 - Magnetic saturation
 - Non-sinusoidal flux
 - Non-periodic characteristics (end effects)
 - Cogging force
- Two approaches are analyzed for modeling a Linear Motor:
 - Based on Finite Element Analysis (FEA)
 - Based on Magnetic Equivalent Circuits (MEC)
- Model oriented for:
 - Simulation of the drive (more features than the fundamental wave model)
 - Design of the controllers

Motor Description

- Linear motor
- Permanent Magnet (PM) synchronous motor
 - high efficiency
 - high power density
 - allows a higher air gap
- Long stator (carriageway) Short mover (vehicle)
 - passive mover: no brushes or cables connected
 - longer travel distance

Motor Description

- Pole pitch τ = 30 mm
- Stator: 13 poles 39 slots
- Mover: 3 poles
- Nominal Force 500 N
- Nominal Current 54 A

R. Leidhold, R. Benavides, P. Mutschler

Motor Description

R. Leidhold, R. Benavides, P. Mutschler

Motor Model

R. Leidhold, R. Benavides, P. Mutschler

SPEEDAM 2006

Page 8

 \rightarrow Model

Motor Model: Magnetic Equivalent Circuit

R. Leidhold, R. Benavides, P. Mutschler

Motor Model: Magnetic Equivalent Circuit

Flux facing the tooth, due to the magnet

 $\phi_M(x) = B_r \, l_S \, b_G(x)$

R. Leidhold, R. Benavides, P. Mutschler

Motor Model: Finite Element Analysis

R. Leidhold, R. Benavides, P. Mutschler

Results (Static)

MEC based model

FEA based model

Experimental test

R. Leidhold, R. Benavides, P. Mutschler

Results (Dynamic)

R. Leidhold, R. Benavides, P. Mutschler

Conclusions

	FEA based model	MEC based model
Model	Simple and Systematic	Requires special skills
preparation		More decisions must be taken by the developer
Offline computations	Slow (days)	Fast (minutes)
Simulations	Very fast (minutes)	Very fast (minutes)

- Slight differences between models and experimental tests
- High agreement between results of both models
- Future work: use of MEC based model for analysis of magnetic saliencies (for sensorless position detection).

The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation.

http://www.humboldt-foundation.de