Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections

Roberto Leidhold

Peter Mutschler

Department of Power Electronics and Control of Drives Darmstadt University of Technology Germany

Roberto Leidhold, Peter Mutschler

Organization

- Introduction
- Motor Model
- Speed and position observer
- Experimental results
- Conclusions

Linear Motion

- Usually: Rotative motors + rotative-to-linear transmission
 - belts and pulleys
 - racks and pinions
 - screw systems
- Alternative: Linear Motors
 - -higher dynamic response
 - -no backslash
 - -higher efficiency
 - -still more expensive (motor + control)

Linear Motor 🔿

- Permanent Magnet (PM) synchronous motors.
 - high efficiency
 - high power density
 - allows a higher air gap
- Long stator (carriageway) Short mover (vehicle)
 - passive mover: no brushes or cables connected
 - longer travel distance
- Stator arranged by several electrically independent sections
 - reduced reactive power and loses
 - several vehicles in the same carriageway
 - two inverters + power switching among sections
 one inverter for each section

Control 🔿

- Field Orientation -> Mover position required to be known.
- Position sensors
 - expensive
 - reduce the reliability of the whole system
 - sensors are dispersed along the carriageway
 - very difficult to implement in curves

Avoiding position sensors in linear motors is even more important than in rotative motors

- Sensorless methods
 - Position is derived from measured stator voltage and current.
 - Different constrains depending on the method used.

Sensorless methods

• EMF based

- loose performance as speed decreases
- does not work at standstill
- simple to implement.
- non-periodic EMF
- transition between sections
- Based on Magnetic Anisotropies.
 - Require detectable position dependent inductances.
 - More complex.
 - Difficult at high speed.
 - non-periodic anisotropies
 - transition between sections
 - higher leakage inductance (position independent)

Motor Model

Scheme of one section of the linear synchronous motor

- Pole pitch = 30 mm
- Stator: 13 poles arranged in 39 slots
- Mover: 3 poles
- Consecutive sections connected with a 180° phase shift.

Roberto Leidhold, Peter Mutschler

Motor Model

 $\theta = x \, \pi / \tau_p$ $\lambda_{L} = L i$

Normalized EMF space-vector $\gamma(\theta)$

Roberto Leidhold, Peter Mutschler

Page 8

Motor Model

Normalized EMF space-vector $\gamma(\theta)$

Waveform resulting from adding the EMF of three sections

Roberto Leidhold, Peter Mutschler

IECON 2005

 \rightarrow EMF observer

Roberto Leidhold, Peter Mutschler

IECON 2005

• Two EMF observers (active sections i.e. where the mover is and the following)

Roberto Leidhold, Peter Mutschler

IECON 2005

- Two EMF observers (active sections i.e. where the mover is and the following)
- Addition of both EMF space vectors
- One speed and position observer

- Two EMF observers (active sections i.e. where the mover is and the following)
- Addition of both EMF space vectors
- One speed and position observer

```
Speed and position observer
```

$$c = \left[\cos\hat{\theta} \quad \sin\hat{\theta}\right]\hat{\mathbf{e}}$$

$$c = \hat{\omega} f_m \sin(\hat{\theta} - \theta) \cong \hat{\omega} f_m (\hat{\theta} - \theta)$$

$$\begin{cases} \frac{d\hat{\omega}}{dt} = -K_I c \\ \frac{d\hat{\theta}}{dt} = \hat{\omega} - K_P c \end{cases}$$

Roberto Leidhold, Peter Mutschler

Roberto Leidhold, Peter Mutschler

IECON 2005

Roberto Leidhold, Peter Mutschler

IECON 2005

 \rightarrow Speed and pos.

Roberto Leidhold, Peter Mutschler

Roberto Leidhold, Peter Mutschler

IECON 2005

 \rightarrow Exp. setup

Roberto Leidhold, Peter Mutschler

IECON 2005

Nominal current	<i>52</i> Arms
Peak current	104 Arms
Nominal force	900 N
Stator resist.	1.1 Ω
Stator induct.	6.4 mH
Mover Mass	12.5 Kg
Flux	0.068 Vs
Load	122 sin(θ/52) N

1 m

Roberto Leidhold, Peter Mutschler

IECON 2005

 \rightarrow Exp. results

Page 19

Speed 1.17 m/s Step to 1.95 m/s at t = 1 s

Roberto Leidhold, Peter Mutschler

IECON 2005

 $\rightarrow \mathsf{EMF}\;\mathsf{dq}$

Speed 1.17 m/s Step to 1.95 m/s at t = 1 s

Roberto Leidhold, Peter Mutschler

IECON 2005

Speed 1.17 m/s Step to 1.95 m/s at t = 1 s

Roberto Leidhold, Peter Mutschler

IECON 2005

 \rightarrow Current

Speed 1.17 m/s Step to 1.95 m/s at t = 1 s

Linear Speed

Roberto Leidhold, Peter Mutschler

IECON 2005

 \rightarrow Conclusions

Conclusions

- Control of Linear Synchronous-Motors without speed or position sensors.
- Speed control of the mover in a multi-section carriageway.
- Also provides the means to select the sections to be driven.
- Experimental tests in closed loop.
- High agreement between observed and actual values of speed and position, even when the mover is loaded.
- Validate the model simplifications introduced for the EMF observer as well as the overall proposal.

The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation.

http://www.humboldt-foundation.de