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Abstract- In this work, a model for the Long-Stator Linear 
Synchronous-Motor is derived. The purpose of this model is the 
evaluation of sensorless control methods. The model is composed 
by a magnetostatic and an electrical subsystem. The 
magnetostatic subsystem is derived by using the Magnetic 
Equivalent Circuit (MEC) and is expressed as a set of implicit 
nonlinear algebraic equations. The electrical subsystem is coupled 
with the former and is expressed by a set of ordinary differential 
equations. The complete model is solved with a numerical method 
for Differential Algebraic Equations (DAE). The MEC is derived 
from the motor geometry, magnetic characteristics of the involved 
materials, and the winding arrangement. This allows doing 
analysis and simulation of a motor before it is build. In this work, 
an existing Long-Stator Synchronous-Motor is modeled. First, the 
magnetostatic subsystem is compared with Finite Element 
Analisys (FEA), and second, the complete model is validated with 
experimental results. 

 

I. INTRODUCTION 

An important number of sensorless methods have been 
proposed for rotative motors [1][2], however few works can be 
found applying it for linear motors e.g. [3]. Linear motors 
present additional challenges to be solved for the 
implementation of sensorless methods, as like as asymmetries 
caused by end effects, or non-periodicity of the flux linkage or 
of the saliencies. Moreover, long-stator motors are usually split 
in several segments to allow multiple movers and reducing the 
reactive power (e.g. Transrapid), but making the 
implementations of sensorless techniques more complex. It is 
also to be considered that there is a higher diversity of linear 
motors than rotative ones, requiring a targeted analysis for each 
case. 

The first step for implementing a sensorless control method 
is to have an adequate model. When the motor is still under 
development and there isn’t a prototype available to get the 
model parameters by experimental tests, the Finite Element 
Analysis (FEA) is the usual tool. In [4] the use of FEA is 
proposed for analyzing the ability to implement a sensorless 
method on a motor. The FEA is however very time-consuming 
making it inadequate for a dynamic simulation. Another 
alternative is to use the Magnetic Equivalent Circuit (MEC) 
method [5], which can also be implemented starting from the 
motor geometry and magnetic characteristics of the involved 
materials. 

In the present work, a MEC based model is proposed to be 
used to evaluate sensorless methods on linear motors. The 

model is composed by a magnetostatic and an electrical 
subsystem. The magnetostatic subsystem is derived by using 
the MEC and is expressed as a set of implicit nonlinear 
algebraic equations. The electrical subsystem is coupled with 
the former and is expressed by a set of ordinary differential 
equations. The complete model is solved with a numerical 
method for Differential Algebraic Equations (DAE). 

A Long Stator Synchronous Motor, available in the authors 
institute, is modeled. In order to validate the proposed model, 
in a first instance the magnetostatic subsystem is compared 
with FEA, and in a second instance, the complete model is 
validated with experimental results. 

This paper is organized as follows: In Section II the long-
stator linear synchronous-motor is described. In Section III the 
MEC based model is elaborated. In Section IV results of 
comparing the model with FEA and experimental tests are 
presented. Finally, in Section V, some conclusions are drawn. 

 

II. MOTOR GEOMETRY 

The Long Stator Synchronous Motor is arranged in multiple 
segments i.e. stators. Each segment is composed by two facing 
stator-sides forming a slot between them where the mover 
translates. The windings of both sides are parallel-connected 
and electrically independent from the other segments. In Fig. 1 
the diagram of one segment of the motor is shown. 

In this figure, the geometry of the stator and the mover as 
well as the winding distribution is shown. Each segment has 13 
poles arranged in 39 slots, while the mover has 3 poles. 

 

III. MODEL 

A. Magnetostatic subsystem 
The model of the magnetostatic subsystem is derived by 

using the Magnetic Equivalent Circuit (MEC) method [5]. By 
modeling the magnetic system only statically, effects like Eddy 
currents will not be considered. Even if some sensorless 
methods rely on high frequency injection, it analysis can be 
well done neglecting Eddy current effects, e.g. [4]. Other 
methods, however, are expressly based on the transient 
inductance [6], which would not be well modeled with only a 
magnetostatic analysis. 

The MEC method consists in dividing the magnetic system 
in pieces in which the flux flows in (almost) one direction [5]. 
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These pieces, also called “flux tubes”, are represented in the 
Equivalent Circuit by resistances, characterizing the magnetic 
reluctance (or permeance). Windings are represented in the 
equivalent circuit by controlled Magneto-Motive-Force (MMF) 
sources. While Permanent Magnets (PM) are represented by 
constant flux sources. 

The motor of Fig. 1 can be modeled with the equivalent 
circuit shown in Fig. 3. Fluxes are designated by φ , magneto-
motive-forces by F , reluctances by R  (permeances by g ) 
and the Magnetic Potential at node { },i j  by a i j . The magnetic 
potential at each node in Fig. 3 is related to the corresponding 
points shown in the diagram of Fig. 1. The equivalent circuit 
uses N = 40 branches representing stator teeth, while the mover 
is divided into M = 222 branches representing virtual teeth of 
the actual mover and the air slice between both stator sides 
where the mover is absent. 

The lower half of the mover and the lower stator are even-
symmetric to it upper counterparts. In the case of FEA 
simulation, it is used to take advantage of this kind of 
symmetry by simulating only one half of the system, and using 
symmetry boundary conditions. Similarly, in the MEC this 
boundary condition can be implemented by shorting together 
all nodes laying on the axis of symmetry as shown in the 
circuit of Fig. 3. 

Leakage, yoke and mover-tooth reluctances ( SLR , ML mR , 
SYR , Ma mR  and Mb mR ) are linear. Only the stator tooth 

reluctance STR  is considered inherently nonlinear, as there is 
where the flux density is higher. The airgap reluctances ,G m nR , 
which relate each node of layer 1 with each node of layer 2, are 
parametric nonlinear, depending on the mover position x . The 
airgap permeance Gg  between stator tooth 1 and mover tooth 
1 can be calculated as, 

0 ( )S G
G

l b xg
g

µ
=  (1)

where ( )Gb x  is the airgap length covered simultaneously by 
both teeth, g  is the airgap height, 0µ  is the air permeability 
and Sl  is the stack height. The function ( )Gb x  is implemented 
by spline interpolation from the points shown in Fig. 2, where 

STb  and MTb  are the stator and mover tooth width respectively. 
In the same figure, the resulting curve is shown with dashed 
line. For the remaining teeth, the function ( )Gb x  is shifted by 
the distance between them. 
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Fig. 2  Function ( )Gb x  (airgap length covered simultaneously by both 

teeth) 
 
In order to solve the MEC, the corresponding node and 

potential equations are derived and expressed as an implicit 
function: 

( )1 40 , , , , , , ,a x= S 0 1 2 3 Sf F a a a a φ  (2)
Where matrix and vectors are designated by bold symbols, 0a  
to 4a  are the potential vectors of each layer, Sφ  is the stator 
teeth flux vector, SF  is the teeth MMF vector, and x  the 
mover’s position. The implicit function (2) has 3xN+2xM 
rows, 3xN+2xM unknown variables and N+1 known variables 
(e.g. N = 40; M = 222). The complete expression of (2) is 
presented in Appendix I. 
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Fig. 1  Diagram of the PM Linear Motor Geometry 



In order to interface the magnetostatic subsystem with the 
electric subsystem, the teeth MMF vector SF  is related with 
the phase currents as follows, 

S S′′=SF w i  (3)
where [ ]T

S A B Ci i i=i  is the phase current vector, and S′′w  is 
the MMF transformation matrix, which can be derived from 
the winding distribution [5]. Similarly, the flux linkage can be 
related with the teeth flux vector Sφ  by, 

′=S S Sλ w φ  (4)
where [ ]T

A B C= λ λ λSλ  is the phase flux linkage vector, and 
T′ ′′=w w . 

Substituting (3) and (4) into (2), and solving the invariant 
linear subsystem, it can be reduced to, 

( )20 , , , , x= S 1 2 Sf i a a λ  (5)
Shrinking to N+M+3 rows, N+M+3 unknown variables and 

3+1 known variables. 
 

B. Electric subsystem 
The linear motor is fed by a voltage source inverter. In 

Fig. 4, the electric circuit of such a system is shown. Even 
when the star point is not connected, the inclusion of a high 
resistance NR  is considered to get the star point voltage 0Nu  in 
the simulation. It is included in this work, as several sensorless 
methods are based on measuring this voltage. 

From the circuit of Fig. 4 the complete set of differential 
equations can be derived, 
d dt = − +S Sλ R i u  (6)
with, 

3x NR R= +3 3R I 1  (7)
being 3I  the identity matrix, and 3x31  a 3x3 matrix of ones. 

 

 

0 

RN 

uA 

uB 

uC 
R 

R 

R 

N 

iA 

iB 

iC 

A 

B 

C 

Ad
d t
λ

Bd
d t
λ

Cd
d t
λ

 
 

Fig. 4  Electrical circuit of the linear drive 
 

C. Complete system 
The set of implicit nonlinear algebraic equations (2) cannot 

be directly solved in order to insert it in the differential 
equation (6) i.e. cannot be expressed as ( )S=Si f λ . 
Consequently, it must be solved numerically together with the 
differential equation. Equations (6) and (5) form a set of 
differential algebraic equations (DAE). In order to solve the 
DAE, the algorithm presented in [7] is used. In order to start 
solving the DAE, consistent initial states must be provided. 
Therefore, the algebraic equation will be solved first (with the 
initial states of the ODE, (0)Sλ ), using a nonlinear algebraic 
solver. 

IV. RESULTS 

A. Magnetostatic MEC simulations compared with FEA 
The sensorless capability of a synchronous motor can be 

initially analyzed from the position dependence of its 
inductance or its induced Electro Motive Force (EMF), 
depending on the considered sensorless method. The 
inductance matrix was derived as a function of the position and 
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Fig. 3  Magnetic Equivalent Circuit of the Linear Motor of Fig. 1 
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Fig. 5  Inductance Lαα as a function of the position, a) by MEC, b) by FEA 
 

transformed into the in αβ coordinates (i.e. Clarke 
Transformation). It was obtained by using the MEC model on 
one hand, and by using the FEA on the other. The inductances 
Lαα  and Lββ  obtained by the MEC model are shown in 
Fig. 5.a, and by FEA in Fig. 5.b. The inductance was derived 
with zero current. It is however also possible to analyze the 
inductance dependence on current by using this model. 

Results were also obtained for the induced EMF. The 
normalized EMF ωαβ0e  is shown in Fig. 6.a and Fig. 6.b as 
obtained by using the MEC model and the FEA model 
respectively (where ω  is the electrical angular speed). 

It should be remarked that the processing time for the FEA 
simulation took more than ten times the processing time for the 
MEC simulation. The MEC simulation was implemented in 
Matlab, in which the objective function is interpreted each 
iteration of the solver. This could be speed-up even more by 
compiling the objective function. 

 

B. Dynamic MEC simulation compared with experimental results 
In order to analyze the complete model, the injection of a 

high-frequency alternating voltage is tested. This test allows 
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Fig. 6  Normalized EMF as a function of the position, a) by MEC, b) by 

FEA 
 

verifying the capability to use a sensorless method with signal 
injection as proposed in [8]. In this test, an alternating voltage 
is applied in the d-axis of an arbitrary reference frame γ , 

a cos( )
0

C C tγ ω 
=  
 

u  (8)

where aC  is the amplitude of the injected voltage, and Cω  is 
the frequency. The resulting q-axis current, in the same 
reference frame, is bandpass filtered and demodulated as 
follows, 

sin( )dem q Ci i tγ= ω  (9)
If the motor presents magnetic saliencies, this signal will be 

position dependent and can be used to detect the mover’s 
position [8]. As can be appreciated in Fig. 1, the mover has 
surface magnets. Consequently, the magnetic saliencies are 
mainly due to the saturation they produce in the stator. 

For test purposes, the signal is injected at a constant 
reference frame angle γ , while the mover travels along the 
stator span at a low speed ( 0.156 /v m s= ). The amplitude of 
the signal is a 80C V=  and the frequency is 1 kHz. Simulation 
results of the demodulated signal demi  are shown in Fig. 7 
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Fig. 7 Demodulated signal demi  as a function of the position obtained by 

simulation, a) 0γ = , b) / 2γ = π  

 
while in Fig.8 the experimental results for the same test are 
shown. 

It can be appreciated in both figures that the signal demi  
presents an offset depending on the reference-frame angle γ . 
This offset, which can also be seen as a stationary saliency, 
will produce a perturbation in the position detection. However, 
as the reference frame angle γ  is a known value, the offset can 
be compensated. 

 

V. CONCLUSIONS 

A dynamic model based on the Magnetic Equivalent Circuit 
(MEC) was derived for a Long-Stator Linear Synchronous 
motor. This allowed analyzing how sensorless methods would 
work on it. Characteristics like magnetic saliencies, due to the 
saturation that the permanent magnets produce in the stator, are 
well represented with this model. When the motor has wide 
yokes, this characteristic can be well modeled even including 
nonlinearity only in the stator teeth. 

Results of the magnetostatic subsystem were compared with 
results obtained by Finite Element Analysis (FEA), showing 
good agreement between them. The complete MEC based 
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Fig. 8 Demodulated signal demi  as a function of the position obtained by 

experimentation, a) 0γ = , b) / 2γ = π  

 
model was also compared with experimental results, by 
injecting a high frequency voltage as used for sensorless 
methods. When comparing the obtained demodulated signal by 
simulation and by experimentation, slight differences raised. 
There are however, some known differences between the 
experimental setup and the model (e.g. the setup is arranged in 
a circular path, being therefore one wedge-shaped tooth per 
pole, while in the simulation all teeth are considered equal and 
rectangular). Nevertheless, with the proposed model it was 
possible to analyze the ability to apply a sensorless control 
method on the linear motor. 

 

APPENDIX I 

Equations of nodes 0a , 1a , 2a , 3a , 4a  and the equations of 
the teeth potentials, can be expressed in vector form, yielding 
respectively: 

(N-1)xN (N-1)− + =S 0 0I φ C a 0  (10)

1 NS + − + =1 11 1 12 2φ C a C a C a 0  (11)
( )3 MMa− − − + + − =PM 2 2 2 21 1 22 2φ G a a C a C a C a 0  (12)
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( ) ( )M 4 MMa Mb a+ − + − − =PM 2 3 3 3 3φ G a a C a G a I 0  (13)

1xM 1xM Mx1 4 0Mb Mb a− =31 G a 1 G 1  (14)

(N-1)xN N( )T
ST− + + =1 0 S Sa I a F f φ 0  (15)

where XI  is the identity matrix of dimension X, XxY1  is a XxY 
matrix of ones, X0  is a column vector of dimension X, 

(N-1)xN

0 1 0 0
0 0 1 0
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[ ]( )1 2diagMa Ma Ma MaMg g g=G  

[ ]( )1 2diagMb Mb Mb MbMg g g=G  

and STf  is the elementwise function that relates tooth flux with 
its magnetic potential drop. Usually the magnetization curve is 
provided as a B vs. H table. From this table, a spline function 
can be implemented: 

( )FeH f B=  (16)

From this function, the MMF can be related with the flux as 
follows: 

( ) ( )( )Fe S S STF f l b h f= =φ φ  (17)

where Sl  is the stack length, Sb  is the tooth width, and h  is 
the tooth height. 

Equations (10)-(15) form the implicit function 1f . 
The equations of the equivalent circuit are rearranged to 

allow transformations (3) and (4) to be applied. Therefore, Sφ  
is solved from (11) yielding, 

( )S = − −11 1 1 12 2φ C C a C a  (18)
Next, by substituting (18) into (10) and (15), and applying 

transformations (3) and (4), the equivalent circuit equations 
become, 

( )( )(N-1)xN (N-1)− − − + =11 1 1 12 2 0 0I C C a C a C a 0  (19)

( ) 3′ ′+ − + =S S 1 11 1 S 12 2λ w C C a w C a 0  (20)

( ) MMa Ma− + − + − + =PM 21 1 22 2 2 3φ C a C G C a G a 0  (21)

( ) Mx1 4 MMa Ma Mb Mb a+ − − + + =PM 2 3 3φ G a G C G a G 1 0  (22)

1xM 1xM Mx1 4 0Mb Mb a− =31 G a 1 G 1  (23)
( )(N-1)xN N( )T

S S′′− + + − − =1 0 ST 11 1 1 12 2a I a w i f C C a C a 0  (24)
By offline solving the linear invariant subsystem, 

computational burden can be highly reduced for solving the 
DAE. Node potentials 0a , 3a  and 4a  can be solved from (19), 
(22) and (23), requiring only constant matrices to be inverted 
(taking into account that 11C , 12C , 21C  and 22C  are position 
dependent). After substituting the solved expressions for 0a , 

3a  and 4a  into the remaining equations (20), (21) and (24), the 
implicit function 2f  is obtained (eq. (5)). 
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