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ABSTRACT

An improved algorithm of Direct Mean Torque
Control (DMTC) of an induction motor is presented.
DMTC combines the good dynamic performance of
Direct Torque Control (DTC) with the advantages of
time equidistant control algorithms for digital
implementation in signal processor based systems. The
predictive algorithm allows even to exploit machines
with extremely small leakage inductance.
At low speed, the new flux controller allows to
decrease the torque ripple. At high speed, a new
algorithm to calculate the on-time of voltage vectors
shows a better switching behaviour and even less
torque ripple, whereas the dynamical performance is
kept. The basic idea is to estimate the inevitable torque
ripple in steady state and match it at the end of the
cycle. Thus, the mean torque is directly controlled as
well. The criteria how to choose the appropriate vector
depend on the state of the machine and the deviations
of flux and torque. The algorithms are well suited for
an implementation on digital signal processor based
systems with less external hardware requirement.
Simulations and experimental results confirm the
validity of the control scheme.

INTRODUCTION

Classical field orientation has achieved a good perfor-
mance in many applications where a converter with
high switching frequency is used. In this case, a micro-
controller may satisfy the needs of calculation power.
Direct methods achieve a higher dynamic performance

since they do not use a modulator, i. e. PWM. Using
comparators with hysteresis, analog devices are
commonly used to realize DTC [1], or similar
methods. If one has to keep the torque in a preset
hysteresis-band with a minimum of switching events,
[2] is best suited, but current harmonics are rather
large. In modern drives, a digital implementation
offers more flexibility, and it is easier to bring it into
service. A quasi-analog realization has been presented
by [3]. The sampling frequency must be significantly
higher than the desired switching frequency to keep
the torque in the hysteresis band. A prediction of the
switching events similarly to [4] is possible, but the
sampling events are no longer equidistant. Just using a
constant cycle time is advantageous for digital imple-
mentation. So the predicted time may be fixed. For a
given time interval, it is possible to forecast several
switching events in order to distribute the computation
time over the cycle. A first approach has been
presented in [5]. Since the influence of the zero vector
was not taken into account to estimate the on-time of
the voltage vectors, an adaptation algorithm was
necessary to compensate the torque offset. Another
approach to DTC with constant cycle time is Direct
Mean Torque Control (DMTC) [6]. This paper
presents an improved method of DMTC that provides
less torque ripple at lower speed. This is achieved by a
more sophisticated treatment of the mainly flux
increasing vectors, which may increase or even
decrease the torque. At higher speed, DMTC [6] may
cause some suspicious switching behaviour due to the
equation used to calculate the on-time of the voltage
vector. The new method calculates the on-time in a
way that steady state of torque is directly reached at the
end of the cycle.



CONTROL STRATEGY

Basic Control Scheme

DMTC, and the improved scheme as well, use constant
switching frequency and determine the switching
events in advance for a fixed cycle ts. It is therefore a
type of predictive controller. The aim is to place the
switching events directly in a way that the mean torque
over the cycle is equal to the desired value. In most
cases, alternate switching of a voltage vector (VV) and
a zero voltage vector (ZV) satisfies the demand. Fig. 1
shows the control structure of improved DMTC.

Fig. 3 shows a typical cycle of operation. Applying a
voltage vector first, the torque increases at the
beginning. Then, applying a zero vector, the torque
decreases. The objective is to equalize the differently
hatched areas. In steady state, the torque T(tn) at the
beginning of the cycle should be equal to its value
T(tn+1) at the end. Instead of equalizing the different
hatched areas in fig. 3, it should also be possible to
switch the VV in order to reach directly the value of
T(tn+1) according to steady state, thus

T(tn+1)  =  TEnd  =  Tref  –  ½ · εT (1)

where εT is the ”virtual hysteresis width“.

Preliminary steps

The motor can be modelled in a stator reference (a, b)
by the following equation:
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By integration (i. e. Runge-Kutta 2. order), this model
allows to predict the state of the machine for the
beginning of the next cycle. The correction of the
model, thus the observer, is no subject of this paper.
The torque is given by
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where CT depends on the transformation matrices, i. e.
CT = 3/2. Similarly to [1], we determine the sector of
the flux by comparing its components ψsa, ψsb with
three digital comparators αu, αv, αw. The outputs of
the comparators allow to classify the voltage vectors of
the converter to flux and torque increasing and
decreasing vectors, illustrated in fig. 2. The VVm±0
according to sector m (i. e. {1} is according to Sect1)
is to be used as a mainly flux increasing VV. The
VVm±1 is flux and torque (in direction of ω)
increasing, VVm±2 decreases the flux and increases
the torque.Preselection of
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Figure 1: Control structure of improved DMTC
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Figure 2: Sectors, Voltage and Zero Vectors



The positive direction, thus VVm+1,2,3, is chosen if:

 ∆T  ≥  T· ZV · ts  +  ½ · εT (4)

with  ∆T = Tref – T(tn). Otherwise, we use VVm–0,1,2.
Since VVm±1 is normally the most taken VV, we
assume εT as the ”virtual hysteresis width“ while
using VVm±1. εT can be expressed as:

εT = T· VV · hVV = – T· ZV· hZV = – T· ZV · (tS – hVV) (5)

T· VV can be calculated by deriving eq. 3. Since the state
of the machine at tn+hVV is not known yet, it is the
easiest way to get T· ZV from the last cycle:
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We eliminate hVV in eq. 5 to get:
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With T· VV = T· VV1, this equation is used in eq. 1 to
determine the instantaneous torque to be reached at the
end of the cycle. To avoid torque offsets, εT must be
limited to εT ≥ T· VV1·hmin.

Torque Control

For given T· VV = T· VV0,1,2 of VVm±0,1,2, we search its
on-time hVV to attain exactly TEnd. The torque T(tn+1)
at the end of the cycle can be expressed as:

T(t T(t T h T t hn n VV VV ZV S VV+ = + ⋅ + ⋅ −1) ) & & ( ) (8)

Solving this equation for hVV leads finally to:
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Ordinarily, a VV should
only be applied, if the result
of eq. 9 is within
hmin  ≤  hVV  ≤  ts–hmin .
In this case, the torque will
stay in the ”virtual hys-
teresis band“. Since εT has
been calculated for T· VV1,
VVm±1 (⇒ hVV1) satisfies
the demand. For lower
angular speed of the flux
vector, VVm±2 is well
suited, too, whereas VVm±0
has to be checked out.

A special problem crops up if εT ≥ T· ZV · tS, illustrated
in fig. 4. To command the torque as close as possible
at Tref, it is favourable to switch the VV at tn, although
T(tn+1) would be pretty far from the aspired value
Tref  – ½ · εT. By the way, it’s obvious to notice that the
switching frequency drops down. Calculating the on-
time hVV according to eq. 9 leads to hVV < ½ · hmin ,
rounded towards zero. The torque would follow the
dotted line in fig. 4. It falls below the estimated band
limit and a negative torque offset would be observed.
Therefore, if eq. 9 leads to on-times hVV < hmin , we
recalculate hVV with the equation used in [4]. This
often yields to on-times hVV(tn) > ½ · hmin , rounded to
hmin, thus tracking the continuous line in fig. 4. The
principle is to equalize the differently hatched areas in
fig. 3. We just recite the basic equations. We define the
mean values
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Flux Control

Since high dynamic torque control is our main goal,
the flux controller should not interfere with it. Similar
to [1], [4], the stator flux is kept as close as possible on
a circular trajectory. After the preselection of the
VVm±0,1,2, the flux controller uses the flux
propagation and some supplementary rules to choose
the appropriate VV. The length of the flux vector is
given by

ψ ψ ψ ψs,VV s,VV sa sb= = +2 2 (12)

Its derivative is

& ( & & )ψ ψ ψ ψ ψ ψs sa sa sb sb s= ⋅ + ⋅ (13)

For the VV, ψ· sa,b,VV results from eq. 2, whereas for the
ZV, ψ· s,ZV itself can simply be taken from the last cycle
similar to eq. 6:

ψ· s,ZV = ( ψ(told) – ψ(tn) ) / (tn – told) (14)

Starting from eq. 9 resp. eq. 11 of the torque
controller, and ψ· s, we can predict the evolution of the
flux vector over the next cycle for each VV. At higher
speed, the flux controller chooses between VVm±1 and
VVm±2 to influence the flux. A common problem of
DTC methods is the flux maintenance at lower speed,
because the on-times of the VV decrease. First it is
possible to check if the VVm±0 is able to control either
flux and torque as well. Its on-time hVV0 is limited to
hVV0,max by the maximum flux increase which seems to
be tolerable (using ∆ψ from eq. 17a):
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Empirical tests showed acceptable results with C1 = 1.5
and C2 = 2 %. If eq. 9 leads to

hmin  ≤  hVV0  ≤  hVV0,max (16)

Then VVm±0 is adequate to control the torque. If this
is not the case, and the flux cannot be preserved over
several cycles, it is necessary to apply a flux-suppor-
ting VV (i. e. VVm±0), although the torque control
may be affected. If the flux-supporting VV is switched
too late, flux decrease has become important, hence it
requires a longer on-time. The idea in this paper is to
detect the necessity of flux-supporting VV as soon as
possible to diminish its influence over the torque. A
basic intention was to find expressions which check
out relationships between the influences of the
switching states over the flux. Avoiding to compare
with absolute quantities has the advantage of un-
complicated parameterization for different machines.

The algorithm consists of a set of decision rules. We
define its inputs as:

∆ψ = ∆ψ(tn) = ψref(tn) – ψ(tn) (17a)

∆ψVV0 = ∆ψ – ½ · hVV0 · ψ· s,VV0 (17b)

∆ψVV1 = ∆ψ – ½ · hVV1 · ψ· s,VV1 (17c)

∆ψVV2 = ∆ψ – hVV2 · ψ· s,VV2 – (ts – hVV2) · ψ· s,ZV (17d)

∆ψ ZV n oldt t= −ψ ψ( ) ( ) (17e)

Fig. 5 shows the flow chart of the flux controller,
which is performed in fig. 1, Block �. There are three
principle operation modes to enter:

• ”Normal Mode“ where to chose between flux
increasing VVm±1 or flux decreasing VVm±2.

• ”Consider Flux-Supporting VV“ where VVm±0
may only be switched without torque disruption,
VVm±1 otherwise.

• ”Force Flux-Supporting VV“ where VVm±0 must
be switched, although TEnd,VV0 ≠ Tref  – ½ · εT .
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Figure 5: Flow chart of flux controller



In „Flux-Supporting VV“ mode, if T· VV0 decreases the
torque error (i. e. ∆T – ½ · εT ), VVm±0 is switched
for hVV0,max to keep the torque as good as possible.
Otherwise, hVV0 is reduced and the switching order is
inverted. This means, in order to minimize the torque
error over the time, the ZV is applied first, thus
preserved from the last cycle, and after it the VV. The
resulting torque error over such a cycle can be taken
into account by adding it to Tref just for the next cycle.

The decision rules A-G in fig. 5 are mainly
(→ condition is satisfied,   →/   otherwise):

A: ∆ψ  ≥  C3 · ψref    (i. e. C3 = 3%)
AND

ψs(tn) – ψs(tn–1)  ≤  0
→ G →/  B

B: ∆ψVV1  ≤  0
→ C →/  D

C: | ∆ψVV1 |  ≤  | ∆ψVV2 |
→ VVm±1 →/   VVm±2

D: hmin  ≤  hVV0  ≤  hVV0,max (eq. 16)
→ E →/  F

E: | ∆ψVV0 |  ≤  | ∆ψVV1 |
→ VVm±0 →/  VVm±1

F: ∆ψ  >  – 0.75 · ts · ψ· s,ZV

AND
hVV1 · ψ· s,VV1 + (ts –hVV1) · ψ· s,ZV  ≤  0

→ G →/  VVm±1.

G: sign(T· VV0) = sign(T· VV1)
→ VVm±0 first, then ZV, hVV0=hVV0,max

→/  VVm±0, inverted switching order, 
hVV0=hVV0,min

For branch A → G, hVV0,min is set to

hVV
ZV

s,VV
0

0
,min | & |

=
− ⋅∆ψ ∆ψ½
ψ

(18a)

whereas for branch F → G:
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Since branch condition A (fig. 5) checks for a
somewhat critical flux decrease, Eq. 18a results in
longer on-times. Setting C4 = ½, Eq. 18b assumes that,
in the succeeding cycle, VVm±1 will provide a certain
flux increase, too.

Some additional constraints are generally included for
the branch conditions to avoid suspicious switching
patterns:

• When entering ”Force Flux-Supporting VV“ mode,
a flag is set. After this cycle, we never use flux
decreasing VVm±2.

• ”Force Flux-Supporting VV“ mode is never entered
after a cycle with VVm±2.

In the following section some simulations will
illustrate the smooth behaviour of these to some extent
complex rules.

SIMULATION RESULTS

The algorithm has been checked out first with some
simulations. To analyse the inner torque control loop
without further influences we propose a brief start-up
with constant torque (i. e. 50% of rated torque Trated),
followed by a deceleration of about 10% Trated. Since
we want primarily illustrate the working principle of
the torque controller, the simulation uses ideal
parameters. Furthermore, it neglects the delay of the
inner prediction model that would in reality be caused
by the computation time. Fig. 6 shows an example.

At the beginning, Tref = 0 yet, only „Force Flux-
Supporting VV“ mode intervenes to apply VVs.
During acceleration, the ”virtual hysteresis“ enlarges
due to increasing |T· ZV|. Requesting lower torque at
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lower angular speed leads to short on-times hVV which
yields to significant interference of the flux controller.
Some alterations of the flux phasor may be observed,
whereas torque outliers do not appear.

The polar diagram of the flux phasor (fig. 7) proves,
that even the flux alterations are not very important.
Fig. 8 presents a more detailed view of the controller’s
behaviour. In this extract, the controller mostly enters
”Normal mode“. Due to the fact that, just before

passing the sector boundary, the VVm±2 decreases the
flux only little, some switching of VVm±1 is sufficient
to refresh the flux. After passing the sector boundary,
”Consider Flux-Supporting VV“ leads to a few
VVm±0. Due to T· VV0 < T· VV1 , the ”virtual hysteresis“
and its offset slightly vary.

EXPERIMENTAL RESULTS

The whole control scheme has been implemented on a
signal processor TMS320C30 at 40 MHz, mainly in
highlevel programming language C. The cycle time
was set to 150µs, leading to a switching frequency of
3.33 kHz per transistor. This time includes data
acquisition, a speed controller, and some extensions
for experimental purposes and as well. The following
fig. 9 depicts an oscilloscope screenshot of the
program test.

At the beginning of the interrupt routine we intend to
reserve some time for position and speed control. After
estimating the new torque reference Tref, the preselec-
tion of the VVm±0,1,2 is done, followed by the torque
and flux control algorithms. In order to synchronize
accurately to real-time, the delay until switching the
VV has been fixed to tdelay = 70µs. In this experimental
set-up, the second timer of the DSP is employed to
generate a switching interrupt. The prediction of the
model is performed in two steps (hVV, hZV) after
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switching the VV. Fig. 10 shows an experiment
similar to the simulation in fig. 6.

The start-up with constant torque works well. A fast
change of the measured phase current can also be
noticed. Due to the poor open loop observer without
current feedback, the deceleration is not as uniform as
in the simulation. Finally, fig. 11 focuses on a special
problem of the experimental set-up. As a result of the
extremely short torque rise time, a strong mechanical
resonance can be observed.

CONCLUSION

A novel algorithm for DMTC is proposed. A new
equation for the on-time of the VV and the ZV
provides to reach steady state directly at the end of a
fixed cycle. The predictive algorithm calculates two
switching states in advance. Thus, it is possible to
switch a VV for a very short time. This allows to
exploit machines with extremely small leakage
inductance. The currents can be changed very fast, and
the torque as well, resulting in very high dynamic
performance.
The algorithm seems to be rather complicate to realize.
In conclusion, this is not the case. Many of the rules
proposed for the flux controller have implicit relations.
Observer and speed controller are still a subject of our
research.
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PARAMETERS

R1 = 0.79 Ω L1 = 66.57 mH
R2 = 0.76 Ω L2 = 66.59 mH
Lh = 65. mH ψref = 0.52 Vs
nN = 1500 min-1 Trated = 33 Nm
Zp = 2  Udc = 540 V fN = 50 Hz
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Figure 10: Experimental start-up, Tref1 =16.5, Tref2 = -3
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