
INTRODUCTION

Classical field orientation has achieved a good
performance in many applications where a converter
with high switching frequency is used. In this case, a
microcontroller may satisfy the needs of calculation
power.

Direct methods achieve a higher dynamic performance
since they do not use a modulator, i. e. a PWM. Using
comparators with hysteresis, analog devices are com-
monly used to realise Direct Torque Control
(Takahashi and Noguchi [1]) or similar methods. An
entirely digital implementation seems to be interesting
to avoid additional analog components, but it is a
computation intensive task to control every switching
event, particularly when a sophisticated model of the
machine is required. Induction motors with small
leakage inductance leading to fast current change
promise excellent dynamics, but require short pulse
intervals to decrease torque ripple. The computational
expenditure necessary to realise short pulse intervals
seems to be too expensive for an entirely digital
implementation, and maybe slightly exaggerated too.
On the other hand, the switching interval varies in a
wide range. At high and low speed, long and short
switching intervals alternate. If one has to keep the
torque in a preset hysteresis-band with a minimum of
switching events, Depenbrock [2] is best suited, but
current harmonics are rather large. Reduced current
harmonics but some more switching events are
generated by [1].

If current harmonics are to be reduced, constant
switching frequency is preferable. Additionally, digital
implementation calls for constant switching frequency.

CONTROL STRATEGY

Basic Control Scheme

Fig. 1 shows the control structure of DMTC. It uses
constant switching frequency and determines the
switching events in advance for a fixed cycle ∆tcycle.
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Figure 1: Control structure of DMTC

The switching events are directly scheduled in a way
that the mean torque over the cycle is equal to the
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desired value. In most cases, switching a voltage vector
(VV) and a zero voltage vector (ZV) satisfies the
demand. In general, there are always two VVs to
influence the torque in the desired manner. The choice
of the adequate VV is made by the flux controller in a
way that the flux deviation at the end of the on-time of
the VV is minimal.

Torque1) Control

Fig. 2 shows a typical cycle of operation, which may be
similar to those of the control scheme proposed in [1]
in steady state. Applying a voltage vector first, the
torque increases at the beginning. Then, applying a
zero vector, the torque decreases. The object is to
equalise the differently hatched areas.

Figure 2: Typical cycle of operation of DMTC

The motor can be modelled in a stator reference (a, b)
by the following equation:
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Eq. (1) is solved online in the block "Machine Model"
of Fig. 1 using Runge-Kutta integration of second
order. For this model, the torque is given by
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Similarly to [1], we determine the sector of the flux by
comparing its components ψsa, ψsb with three digital
comparators (α0, α60, α120 in fig. 3, calculated in
fig. 1 �). The actual torque, given by eq. (2), is com-
pared with its reference value. The outputs of the
comparators and the result of the flux controller
presented below allow the choice the voltage vectors of
the converter. These are classified by flux and torque

___________________________________
1 In this paper, torque is denoted by the character "M".

increasing and decreasing vectors, as is illustrated in
fig. 3. In every cycle the voltage vector is applied first,
then a zero vector is switched. If the on-time of a vector
is exceptionally too short, the other one is applied all
over the cycle.

Figure 3: Voltage and Zero Vectors, Sectors

To minimize switching losses, the zero vector
may be chosen in a way that at most one

 phase has to be switched as shown in table 1.

TABLE 1 - Selection of voltage vectors (VV)

{voltage/zero vector} 0 1 2 3 4 5 6 7

{succeeding zero vect.} 0 0 7 0 7 0 7 7

This choice of the ZV has the inconvenience that the
maximum switching frequency of a switching device
can be exceeded at low speed. In this case, the flux
vector stays over a long time in the same sector.
Applying always the same VV and ZV over the sector,
the switching frequency in the according phase may be
exceeded. In this case it is preferable to alternate over
succeeding cycles between the two different ZVs. I. e.,
this may lead to a sequence like {1}-{0}-{1}-{7}-{1}-
{0}, etc. Surpassing a certain speed, the ZV is chosen
according to table 1.

Proceeding from fig. 2, we define:

M M t M t tVV n n VV= + +
1
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The mean value of the torque Mcycle over ∆tcycle can be
written as:

M M t M t tcycle VV VV ZV ZV cycle= ⋅ + ⋅( ) /∆ ∆ ∆ (5)
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The values of MVV  and MZV  can be approximated

using the linear prediction of M(tn + ∆tVV):
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and M(tn + ∆tcycle):
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where (from fig. 2):

∆ ∆ ∆t t tZV cycle VV= − (8)

The derivatives of the flux components at t=tn have
already to be calculated to solve eq. (1). Thus,
dMVV(tn)/dt can be determined by deriving eq. (2).
dMZV(t+tn)/dt can be approximated by:
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We obtain (see appendix) as a final result for the
switching instant (fig. 1 �):

∆ ∆t tVV cycle= − (10)

It is to be mentioned that this algorithm is best suited
for lower speed, where ∆tVV < ∆tZV. If ∆tVV > ∆tZV, this
method leads to unnecessary tall torque ripple. Hence
for higher speed a modified procedure is processed. It
will be presented in a subsequent paper.

Flux Control

Since high dynamic torque control is our main goal, the
flux controller should not interfere with it. Similar to
[1] the stator flux is kept on a circular trajectory.
However, the method presented here does not use
additional switching events to control the flux, but does
it just by the selection of an appropriate VV at the
beginning of the interval. After the determination of the
sector and the imposition of the torque controller, two
VVs remain (fig. 3; see [1]) to be favoured by the flux
controller. Here the idea is to choose the VV that offers
less flux deviation at the end of its on-time (fig. 1 �).

Normally, the two potential VVs (U
r

n,x, U
r

n,y) lead to
different on-times (∆tn,x , ∆tn,y) imposed by the torque
controller. So we have to estimate the flux propagation
for both cases. Fig. 4 presents a geometric approach,
where the circular flux trajectory is approximated by a
straight line in the direction ψtan.
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Figure 4: Flux propagation with
two different VVs

In most cases it is appropriate to
presume that the torque controller
demands a constant angular speed
of the flux vector. Therefore in the
actual cycle (n) the tangential
component of the flux vector will be equal to its value
in the last cycle (n-1). This leads in fig. 4 to
∆ψtan,n = ∆ψtan,n-1. If the same VV as in the last cycle is
chosen (U

r
n,x = U

r
n-1), the flux vector will nearly move in

the same direction. Its propagation can be expressed as:

∆ψ ∆ψrad n x rad n, , ,= −1 (11)

Now we are searching for the flux propagation
ψrad,n,y of the alternative VV (U

r
n,y) as a function of

the estimated ψrad,n,x. It is useful to find a general
expression without machine-dependent parameters.
We define:
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According to fig. 4 we can define two variables x, y
related to ∆ψ:

x rad n x=
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, , (13)

As x is known from eq. 11, we are just searching for
the function y=f(x). From fig. 4 we obtain:
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And, with
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tan cos( )= αx (16)

this leads to:
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(17)

Unfortunately, eq. (17) is rather difficult to compute in
real time. A favourable approximation should be
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obtained by a Taylor sequence, where the second and
higher order derivatives are somewhat complicated.
Analysing the error function, we have chosen as a
satisfactory approximation:

y
x x

x x x

x

x
≈

− ⋅ + ⋅
− ⋅ + ⋅ − ⋅

∀
∀

≥
<






1538 2 488 0 821

1733 3767 3 6 2

0 5

0 5

2

2 3

. . .

. . .

.

.
(18)

Using eq. 18 to determine ∆ψrad,n,y , the flux controller
choses

r
U ifn y rad n y ref rad n x ref, , , , ,| | | |ψ ψ ψ ψ ψ ψ0 0+ − < − − ,

 U
r

n,x  otherwise. (19)

The equations above are valid for a U
r

n-1 that decreases
the flux. Similar expressions can be found for a flux
increasing one (only some signs change).

Exceptional Flux Handling

Flux Decrease. If in particular operating points –
mostly at low speed when the flux vector has crossed a
sector boundary – the on-time of the voltage vectors is
too short over several cycles. Then it is possible that the
flux cannot be kept at the desired value by torque-
controlling VVs only. In this case, the priority is given
to the flux controller and a mainly flux increasing
vector has to be applied:

TABLE 2 - Mainly flux increasing vectors

Sector 1 2 3 4 5 6

Voltage Vector {1} {2} {3} {4} {5} {6}

Since these vectors appear for the torque controller as
disturbances, their on-time should be as short as
possible. The minimal on-time ∆tflux,min for the VV
results from the fact that such a VV has to compensate
at least the voltage drop across the stator resistance. It
can be expressed as:
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At the sector boundary the radial component of the VV
is given by:

U Urad d= ⋅ °
2
3

30cos( ) (21)

The average voltage time area deducted by URs over the
whole cycle has to be equal to the voltage time area
given by the radial component of the VV applied over
∆tflux,min. Hence it follows:

U t U tRs cycle rad flux⋅ = ⋅∆ ∆,min ,min (22)

Replacing URs (eq. 20) and Urad (eq. 21) in eq. 22, we
obtain:
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In order to return the priority in the next cycle to the
torque controller, the time ∆tflux,applied when the mainly
flux increasing vector is applied has to be prolonged.
We introduce an additional rating factor kψ:

∆ ∆t k tflux applied flux, ,min= ⋅ψ (24)

Simulations and experiments have shown that kψ=1.5
satisfies the needs.

Particular Switching Order. In some special cases,
after applying a mainly flux increasing VV or after a
ZV all over ∆tcycle , ∆ψrad,n-1 in eq. 11 is unknown.
Thus, it is not possible to use the approximation given
by eq. (17). In these cases a simple two level flux
controller is practised. In the first cycle after passing a
sector boundary, a regular flux increasing VV is
applied.

DYNAMICAL PERFORMANCE

Due to the control strategy, for small variations, the
reference value is attained in less than one cycle time.
The computation time up to the moment where the VV
is switched is taken into account by delaying the output
signal for 40µs. Thus, the dynamic behaviour may be
expected just to be a delay. To get a first approach to
the Bode diagram, we simulated the system with a
random reference signal inferior to 3% (=1 Nm) of the
nominal torque (MN = 33 Nm). The cycle time was of
150µs. The transfer function is given by the relation of
the crosscorrelation function PUY to the autocorrelation
function PUU. Filtering the correlation functions to get a
smoother plot with fewer outliers, we obtain the plots
presented in fig. 5. Without surpassing any voltage or
current limit, the gain is close to 1 up to 3.5 kHz. The
phase angle falls short of –180° at the same frequency.
Both values seem to be excellent.
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Fig 5: Bode diagram M/Mref  for small-signal reference
(at n = 240 min-1  ⇔  ω = 0.16 p. u.)



For higher reference variations, a binary random
reference signal of +/– 20 Nm was applied, leading to
fig. 6.
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Fig. 6: Bode diagram M/Mref  for large-signal reference
(at n = 240 min-1  ⇔  ω = 0.16 p. u.)

In this case, the cut-off frequency of about 1 kHz is
mainly limited by the voltage of the intermediate circuit
and the stray reactance of the machine. The phase
angle is above –180° even at 2.4 kHz.
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Figure 7: Typical flux trajectory

Fig. 7 shows a typical flux trajectory. Slight variations
of a "virtual hysteresis width" may be recognised from
the middle of a sector to its boundary.

EXPERIMENTAL RESULTS

The control scheme has been implemented on a system
based on the signal processor TMS320C30 at 40 MHz.
The cycle time was set to 150µs, leading to a switching
frequency of 3.33 kHz per transistor. This time includes
some reserves for later extensions and experimental
purposes. This time may be decreased significantly as
the computation time required for the DMTC algorithm
is about 100µs.

Fig. 8 shows the start-up of the motor at constant
setpoint of the torque of 10 Nm. At low speed the effect
of flux increasing vectors can be noticed in the torque
ripple. The width of the torque ripple may amaze. It
has a maximum at ω = 0.5 p. u. In fact, it is due to the
small leakage reactance of the machine.
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Figure 8: Start-up with constant torque reference

Fig. 9 shows the dynamic performance at a setpoint
step-change of 10 Nm (ca. 30% MN).

The delay of the measured current and the internal
model is due to an additional filter on the A/D-board.
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CONCLUSION

A novel scheme to control flux and torque of an
induction motor is proposed. DMTC is optimised for
digital implementation at constant switching frequency,
offering high dynamics particularly in an entirely
digital control environment with synchronised control
tasks. The algorithm proposed in this paper is suitable
for lower speed. A further publication may show the
enlargement for higher speed.
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PARAMETERS

R1 = 0.79 Ω L1 = 66.57 mH Zp = 2 fN = 50 Hz

R2 = 0.76 Ω L2 = 66.59 mH nN = 1500 min-1 MN = 33 Nm

Lh = 65. mH ψref = 0.52 Vs Ud = 540 V

APPENDIX

Derivation of eq. 10

To obtain eq. 10, we begin with employing the equations 8 and 9 in eq. 7. We obtain:
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Using eq. 6 in eq. 3, we get:
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In the same manner we employ the equations 6 and 25 in eq. 4. This leads to:
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We substitute some terms in eq. 5 by the eq. 26, 27 and 8:
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Now we set M
—

cycle = Mref and solve this equation to get ∆tVV. This leads to eq. 10.




